

Wei ZENG

(+65) · 9379-9504 ◊ w.zeng@u.nus.edu ◊ [Homepage](#) ◊ [LinkedIn](#)

EDUCATION

National University of Singapore	Aug. 2023 – May. 2027 (Expected)
◦ Ph.D. in Computer Science	<i>Overall GPA: 4.85/5.00</i>
– Advisor: Prof. Ye WANG, Sound and Music Computing (SMC) Lab	
National University of Singapore	Aug. 2021 – Jun. 2023
◦ M.Eng. in Mechanical Engineering	<i>Overall GPA: 4.63/5.00</i>
– Advisor: Prof. Chee Kong CHUI	
Shanghai Jiao Tong University	Sep. 2016 – Jun. 2020
◦ B.Eng. in Energy & Power Engineering (Major)	<i>Overall GPA: 3.45/4.00 (84.7)</i>
◦ B.A. in Musicology (Minor)	<i>Overall GPA: 3.92/4.00 (92.3)</i>

PUBLICATIONS

- [1] **W. Zeng**, J. Zhao, and Y. Wang, “Bridging Piano Transcription and Rendering via Disentangled Score Content and Style,” *The Fourteenth International Conference on Learning Representations (ICLR)* 2026, accepted. [arXiv:2509.23878](#)
- [2] X. He, **W. Zeng**, and Y. Wang, “Peransformer: Improving Low-informed Expressive Performance Rendering with Score-aware Discriminator,” *Proc. APSIPA Annual Summit and Conference (APSIPA ASC)* 2025, pp. 2353–2358. DOI: [10.1109/APSIPAASC65261.2025.11249357](#)
- [3] **W. Zeng**, X. He, and Y. Wang, “End-to-End Real-World Polyphonic Piano Audio-to-Score Transcription with Hierarchical Decoding,” *Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI)* 2024, pp. 7788–7795. DOI: [10.24963/ijcai.2024/862](#)
- [4] X. Gu, L. Ou, **W. Zeng**, J. Zhang, N. Wong, and Y. Wang, “Automatic Lyric Transcription and Automatic Music Transcription from Multimodal Singing,” *ACM Trans. Multim. Comput. Commun. Appl. (TOMM)* 20(7): 209:1–209:29, 2024. DOI: [10.1145/3651310](#)
- [5] X. Gu, **W. Zeng**, and Y. Wang, “Elucidate Gender Fairness in Singing Voice Transcription,” *Proc. ACM Int. Conf. on Multimedia (MM)* 2023, pp. 8760–8769. DOI: [10.1145/3581783.3612272](#)

PREPRINTS

- [1] J. Zhao, **W. Zeng**, T. Lyu, and Y. Wang, “CoMelSinger: Discrete Token-Based Zero-Shot Singing Synthesis With Structured Melody Control and Guidance,” 2025. [arXiv:2509.19883](#)

RESEARCH EXPERIENCE

Zero-Shot Singing Voice Synthesis with Melody Control	Jan. 2025 – Sep. 2025
Advisor: Prof. Ye Wang, SMC Lab, National University of Singapore	
· Proposed <i>CoMelSinger</i> , a discrete token-based zero-shot singing voice synthesis framework built upon a non-autoregressive MaskGCT architecture, enabling structured and disentangled melody control from lyrics and pitch tokens	
· Designed a coarse-to-fine contrastive learning strategy at both sequence and frame levels to suppress prosody leakage from acoustic prompts and improve melody-timbre disentanglement	
· Developed a lightweight encoder-only Singing Voice Transcription (SVT) module to provide frame-level pitch supervision, enhancing pitch accuracy and rhythmic stability under zero-shot settings	

Joint Piano Transcription and Performance Rendering

Sep. 2024 – May 2025

Advisor: Prof. Ye Wang, SMC Lab, National University of Singapore

- Proposed a unified transformer-based sequence-to-sequence framework that jointly models Automatic Piano Transcription (APT) and Expressive Performance Rendering (EPR) by disentangling note-level score content and global performance style representations
- Formulated EPR as an alignment-free Seq2Seq task, enabling scalable training using only sequence-aligned data without requiring fine-grained note-level alignment
- Designed a diffusion-based Performance Style Recommendation (PSR) module to generate stylistically appropriate performance embeddings directly from score content, supporting controllable rendering and style transfer

Hierarchical Audio-to-Score Transcription for Piano

Aug. 2023 – Feb. 2024

Advisor: Prof. Ye Wang, SMC Lab, National University of Singapore

- Proposed an end-to-end Seq2Seq piano audio-to-score transcription framework with a hierarchical decoder to jointly predict bar-level musical structure (key and time signatures) and note-level score content
- Designed a multi-task learning architecture with separate bar-level and staff-wise note-level decoders, enabling transcription of polyphonic piano music with unconstrained voices
- Developed a two-stage training scheme leveraging expressive performance rendering (EPR) for pre-training on synthetic audio and fine-tuning on real human performance recordings to bridge the synthetic–real domain gap

INTERNSHIP EXPERIENCE

Shanghai Artificial Intelligence Research Institute

Nov. 2020 – Apr. 2021

Mentor: Zikai Wang, NLP Intern

- Created database and designed corresponding data tables using MySQL; merged and inserted about 150 million JSON lines from two open source thesis paper databases MAG and AMiner
- Fine-tuned a BERT-based model with supervised learning using paper abstracts and their category labels; generated global semantic embeddings for each paper abstract and stored them in a MySQL database, then built a FAISS-based semantic retrieval system enabling natural language queries to retrieve the most relevant academic papers
- Demonstrated the effectiveness of semantic embedding-based retrieval for large-scale academic literature, enabling efficient topic-level exploration across heterogeneous paper corpora

MISCELLANEOUS

Languages Mandarin (first language), English (TOEFL 102, GRE 324)

Skills Python, MATLAB, C++

Service Member of Student Area Search Committee, SoC

AY2025

Reviewer for TASLP, ICLR, etc.

Teaching IT5005 Artificial Intelligence

2024 – 2026

CS5647 Sound and Music Computing

Sem1 AY2025/26

Awards SoC Honour List of Student Tutors

AY2024/25

Teaching Fellowship of SoC

2025

Research Achievement Award of SoC

AY2023/24

President's Graduate Fellowship

2023 – 2027

Academic Excellence Scholarship of SJTU

2016 – 2020